CARBON-13 NMR SPECTRA OF SOME FURANOSESQUITERPENES, MAJOR COMPONENTS OF LINDERA STRYCHNIFOLIA

Kazuo Tori*, Masako Ueyama, Isao Horibe, Youko Tamura and Ken'ichi Takeda

Shionogi Research Laboratory, Shionogi & Co, Ltd, Fukushima-ku, Osaka, 553 Japan

(Received in Japan 30 October 1975, received in UK for publication 11 November 1975)

The problem of ¹³C signal assignments in ¹³C NMR spectroscopy has been very important from the viewpoint of chemical¹ and biosynthetic² studies of organic compounds from natural sources. Residual ¹³C, ¹H splittings due to indirect ¹³C, ¹H spin couplings observed in a ¹³C NMR spectrum with ¹H single-frequency off-resonance decoupling (SFORD)¹ have been known to be useful for assigning quaternary carbon signals ³ However, it seems necessary to accumulate more data on a variety of indirect J_C, H values until enough knowledge of its magnitudes is available as for J_{H, H} values

We present here ¹³C signal assignments in several furanosesquiterpenes, major components isolated from <u>Lindera strychnifolia</u> V<u>III</u> ⁴ It also appears of practical value to report that the magnitudes of residual splittings of quaternary carbon signals in the furan rings showed behaviour different from the usual type [†] This behaviour will be useful for assigning ¹³C signals in a number of natural furan-containing compounds.

The natural-abundance ¹³C FT NMR spectra of lindenenol (1), lindenenyl acetate (2), their dihydroderivatives (3-5), linderalactone (6), linderane (7), and isolinderalactone (8) in CDCl₃ were measured with ¹H noise decoupling, noise off-resonance decoupling (NORD),⁶ and SFORD techniques

The ¹³C signals for compounds 1 through 5 were assigned using known chemical-shift rules¹ and by examining their SFORD spectra in detail with reference to their ¹H NMR spectra in which ¹H signal assignments were known ⁷ The results are listed in the TABLE The acetylation shifts observed for C-5, C-6, and C-7 were respectively -3 6, +0 8, and -3 2 ppm from 1 to 2, and -3.2, +1 7, and -3 0 ppm from 4 to 5. These shifts allowed differentiation between the C-5 and C-6 and between the C-7 and C-11 signals. The

⁺ Furans are one of a few heteroaromatic compounds in which ${}^{2}J_{C,H}$ is greater than ${}^{3}J_{C,H}$

Carbon No.	1	2	3	4 ~	5	ؤ ^b	Z ^b	.8 ~
C-1	27.4	27.2	28.3	29.1	29.1	130.3 (2.5)	130.0 (1.6)	143.6
C-2	16.6	16.7	16.7	10.9	11.0	25.8 (2.8)	23.0 (1.8)	114.8
C-3	23.1	23.1	26.8	24.5	24.6	26.8 (4.5)	26.6 (2.9)	123.7
C-4	150.0	149.0	39.5	31.9	32.0	135.1 (2.6)	61.3 (6.2)	136.6
C-5	68.4	64.8	71.1	66.1	62.9	151.7 (4.9)	65.6 (4.6)	46.8
C-6	65.1	65.9	67.6	64.2	65.9	74.2 (4.2)	73.2 (2.7)	72.2
C-7	120.9	117.7	121.4	121.3	118.3	115.4 (2.3)	113.7 (1.2)	113.6
C-8	152.5	153.7	152.9	153.1	154.3	152.8 (2.2)	153.2 (1.1)	152.6
C-9	38.4	38.3	39.1	40.8	40.9	40.7 (1.8)	40.4 (0.9)	34.9
C-10	41.3	41.6	43.6	43.6	44.0	130.8 (4.0)	131.6 (1.4)	40.9
C-11	120.1	119.2	119.8	120.1	119.2	122.2 (1.3)	122.2 (0.6)	119.8
C-12	138.5	138.8	138.4	138.2	138.6	137.2 (1.0)	137.1 (0.4)	138.6
C-13	9.1	8.7	9.2	9.1	8.6	8.4 (0.4)	8.3 (0.2)	8.2
C-14	18.2	18.3	20.4	19.8	20.0	15.7 (2.9)	15.8 (1.4)	18.7
C-15	108.0	107.9	17.7	13.6	13.9	173.4 (8.7)	171.5 (5.0)	170.9
CO-CH₃	-	171.0	-	.	170.7	-	-	-
CO-CH₃	-	21.1	-	-	21.0	-	-	-

TABLE. ¹³C Chemical Shift (δ_C) Data in CDCl₃^a

^a ¹³C NMR spectra were taken with a Varian NV-14 FT NMR spectrometer (15.087 MHz) in CDCl₃ containing TMS as an internal reference at 35° using 8-mm tubes; errors of δ_{C} are ±0.1. FT measurement conditions are as follows: spectral width, 3923 Hz; pulse flipping angle, 16°; acquisition time, 0.6 sec; number of data points, 4820; number of transients, <u>ca</u>. 5,000 for noise decouplings and <u>ca</u>. 20,000 for SFORD.

^b Values in parentheses are those for $Eu(fod)_3$ -induced shifts at a 0.5 molar ratio of shift reagent to substrate.

L R = H

2, $R = COCH_3$

_ <u>3</u>

7

4, R = H

5,
$$R = COCH_3$$

SFORD

(423 Hz)

SFORD

SFORD

ırr. at H-9 (167 Hz)

ırr at H-13 (112 Hz) upfield shifts due to steric γ effects¹ observed for C-2 and C-6 were -5.8 and -3.4 ppm, respectively, on changing from 3 to 4.

The variable-temperature ¹³C NMR spectra of $\underline{\delta}$ showed no significant change down to -90° in CD₂Cl₂ and up to +100° in CDCl₃, this implies that the ten-membered ring of $\underline{\delta}$ (and probably of $\underline{7}$) in solution exists as one fixed conformer at the temperatures as suggested earlier by ¹H NMR spectroscopy ^{8,9} The ¹³C signals in $\underline{\delta}$ and $\underline{7}$ were assigned on the bases of known chemical-shift rules, ¹ detailed SFORD experiments with reference to their ¹H NMR spectra, ^{8,10} and Eu(fod)₃-induced shifts.¹¹ The last method was powerful for differentiating between the C-2 and C-3 and between the C-7 and C-11 signals as the molecular conformations for $\underline{\delta}$ and $\underline{7}$ had already been revealed ^{8,10} The assignments as well as the Eu(fod)₃-induced shifts are also listed in the TABLE

FIGURE. ¹³C NMR signals due to C-7 and C-11 in 2 with various ¹H decouplings. During the present study, we found in the SFORD spectra of all the compounds examined that the magnitudes of residual splittings due to indirect $J_{C,H}$ are somewhat puzzling in the furan ring signals. Thus, we examined several SFORD spectra of each compound irradiated at $(CH_3)_4$ Si, H-6, H-9, H-12, and H-13 signals (for example, see the FIGURE). Initially, the reverse assignments were attempted for the C-7 and C-11 signals closely positioned next to each other, since ${}^3J_{C,H}$ is generally greater than ${}^2J_{C,H}$ in However, it is known that ${}^2J_{C,H}$ values (ca. 13 Hz) are larger than ${}^3J_{C,H}$ values (ca. 6 Hz) for furan rings, 5 and also that ${}^2J_{CCH_3}$ values are considerably larger in olefinic methyl groups is for furan derivatives become useful in assigning furan-ring quaternary-carbon signals. For example, we assigned is closely of signals of menthofuran (9) and 3, 6-dimethyl-5-hydroxybenzofuran (10) Finally, the is closely and signals of the table, this was quite straightforward

REFERENCES

- J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York (1972), G C Levy and G. L Nelson, "Carbon-13 Nuclear Magnetic Resonance for Organic Chemists," Wiley-Interscience, New York (1972).
- (2) For a review, see U. Séquin and A. I. Scott, Science <u>186</u>, 101 (1974).
- (3) N. S. Bhacca, F. W. Wehrli and N. H. Fischer, <u>J Org. Chem.</u> <u>38</u>, 3618 (1973), K Tori, S. Seo and M. Tomita, Tetrahedron Lett. 4227 (1974).
- (4) K. Takeda, Pure Appl. Chem <u>21</u>, 181 (1970)
- (5) (a) J. Runsink, J. de Wit and W. D. Weringa, <u>Tetrahedron Lett</u> 55 (1974), (b) M. Hansen, R. S. Hansen and H. J. Jakobsen, <u>J. Magn. Resonance</u> <u>13</u>, 386 (1974).
- (6) E Wenkert, A. O Clouse, D W. Cochran and D. Doddrell, J. Amer. Chem. Soc 91, 6879 (1969)
- (7) K Tori, Abstracts of the 10th Symposium on the Chemistry of Natural Products (Japan) 176 (1966)
- (8) K. Takeda, K. Tori, I. Horibe, M. Ohtsuru and H. Minato, J. Chem. Soc. (C) 2697 (1970)
- (9) K Tori, I Horibe, H Minato and K. Takeda, Tetrahedron Lett. 4355 (1971)
- (10) K Tori, M Ohtsuru, I Horibe and K Takeda, <u>Abstracts of the 6th International Symposium on the</u> Chemistry of Natural Products (Steroids and Terpenes) at Mexico City 33 (1969)
- (11) For a review, see B C Mayo, Chem Soc. Rev 2, 49 (1973)
- (12) G J Karabatsos, J D Graham and F Vane, J Phys Chem 65, 1657 (1961)